Yetter–Drinfeld categories associated with a weak braided Hopf algebra
نویسندگان
چکیده
منابع مشابه
Weak Projections onto a Braided Hopf Algebra
We show that, under some mild conditions, a bialgebra in an abelian and coabelian braided monoidal category has a weak projection onto a formally smooth (as a coalgebra) sub-bialgebra with antipode; see Theorem 1.12. In the second part of the paper we prove that bialgebras with weak projections are cross product bialgebras; see Theorem 2.12. In the particular case when the bialgebra A is cocomm...
متن کاملWeak Hopf Monoids in Braided Monoidal Categories
We develop the theory of weak bimonoids in braided monoidal categories and show them to be quantum categories in a certain sense. Weak Hopf monoids are shown to be quantum groupoids. Each separable Frobenius monoid R leads to a weak Hopf monoid R ⊗ R.
متن کاملThe doubles of a braided Hopf algebra
Let A be a Hopf algebra in a braided rigid category B. In the case B admits a coend C, which is a Hopf algebra in B, we defined in 2008 the double D(A) = A⊗ A⊗C of A, which is a quasitriangular Hopf algebra in B whose category of modules is isomorphic to the center of the category of A-modules as a braided category. Here, quasitriangular means endowed with an R-matrix (our notion of R-matrix fo...
متن کاملAlgebras and Hopf Algebras in Braided Categories
This is an introduction for algebraists to the theory of algebras and Hopf algebras in braided categories. Such objects generalise super-algebras and super-Hopf algebras, as well as colour-Lie algebras. Basic facts about braided categories C are recalled, the modules and comodules of Hopf algebras in such categories are studied, the notion of ‘braided-commutative’ or ‘braided-cocommutative’ Hop...
متن کاملCoquasitriangular Hopf Algebras in Braided Categories
We study (Hopf) bialgebras in a braided category, which are equipped with an inner twist. By means of the inner twist we define the second mutiplication on the (Hopf) bialgebra, which plays the role of the opposite multiplication. Hence one can define the coquasitriangular structure on these bialgebras. Examples of these bialgebras are reconstructed bialgebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arabian Journal of Mathematics
سال: 2012
ISSN: 2193-5343,2193-5351
DOI: 10.1007/s40065-012-0047-9